

Mathematics Tutorial Series

Differential Calculus #6

Differentiation Rules I: Linear and Product Rules

Rule 1: Constants

If y = (constant) then y never changes and its rate of change is 0.

So if k is a constant then $\frac{dk}{dx} = 0$.

Rule 2: Linear

If
$$y = 17 x$$
 then $\frac{dy}{dx} = 17$.

This is a special case of: y = (constant) x

Here if
$$y = mx$$
 then $\frac{dy}{dx} = m$.

Or if
$$y = mx + b$$
 then $\frac{dy}{dx} = m$ also.

This is just a straight line.

It is the same as its tangent and has slope m.

Rule 3: Adding and subtracting

Suppose that y = f(x) + g(x) is a sum of two functions. Rates of change simply add.

Think of this as a stack. Here yellow is graduate enrolment and red is undergraduate enrolment. The university enrolment grows (or shrinks) at a rate that is the sum of graduate growth and undergraduate growth.

Graduate enrolment

Undergraduate enrolment

$$\frac{dy}{dx} = \frac{d(f+g)}{dx} = \frac{df}{dx} + \frac{dg}{dx}$$

Example: Let $y = x^2 + 7x - 113$.

Then
$$\frac{dy}{dx} = 2x + 7$$

Here is an outline of the proof:

$$\lim_{x \to a} \frac{\left(f(x) + g(x)\right) - \left(f(a) + g(a)\right)}{x - a}$$

$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} + \frac{g(x) - g(a)}{x - a} \right)$$

$$f'(a) + g'(a)$$

Rule 4: Products

Consider a function that is a product. Take y = f(x)g(x).

So y is just f(x) multiplied by g(x).

How do we find the derivative of this product?

Think about an area with length L and width W.

The area is $A = L \times W$.

If both *L* and *W* are changing how does the area change?

So what is the derivative of A(t) = L(t)W(t)?

The Product Rule says:

$$\frac{d A(t)}{dt} = \frac{dL(t)}{dt} W(t) + L(t) \frac{dW(t)}{dt}$$

Think of it this way.

Make a rectangle with sides L(t) and W(t)

We want the change in the area when the two sides BOTH change.

Make a change in length and width.

$$\frac{d A(t)}{dt} = \frac{d L(t)}{dt} W(t) + L(t) \frac{d W(t)}{dt}$$

This simply says that the change in the area is the sum of the blue rectangle and the green rectangle (plus a tiny bit in the corner).

Example:

Suppose that
$$y = (x^2 + 7x - 113)(x^2 - 4x + 6)$$

Then

$$\frac{dy}{dx}$$

$$= \frac{d(x^2 + 7x - 113)}{dx}(x^2 - 4x + 6) + (x^2 + 7x - 113)\frac{d(x^2 - 4x + 6)}{dx}$$

$$= (2x + 7)(x^2 - 4x + 6) + (x^2 + 7x - 113)(2x - 4)$$

Proof Outline

The definition of the derivative of function f at point a is:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

If this function is a product f(x) = g(x)p(x) the fraction in the limit is:

$$\lim_{x \to a} \frac{g(x)p(x) - g(a)p(a)}{x - a}$$

Now subtract and add a special term g(a)p(x)

$$\lim_{x \to a} \frac{g(x)p(x) - g(a)p(x) + g(a)p(x) - g(a)p(a)}{x - a}$$

Regroup:

$$\lim_{x \to a} \frac{(g(x) - g(a))p(x) + g(a)(p(x) - p(a))}{x - a}$$

$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a} \lim_{x \to a} p(x) + g(a) \lim_{x \to a} \frac{p(x) - p(a)}{x - a}$$

$$g'(a)\lim_{x\to a}p(x)+g(a)p'(a)$$

We have a proof of the Product Rule as long as we believe that $\lim_{x\to a} p(x) = p(a)$.

This is a property of **continuous functions** and we need function p(x) to be continuous at a. This is true in any case where we use the Product Rule.

$$g'(a) p(a) + g(a)p'(a)$$

Summary

- 1. Derivatives of sums and constants are easy.
- 2. We use the product rule all the time.
- 3. The rules required proof; we have outlined the arguments here. You can find more in any textbook or on-line.
- 4. Using rules correctly is very important.
- 5. Product Rule is much more exciting when we have transcendental functions to play with.
- 6. Product Rule is the basis of "Integration by Parts"